Use of zero fluoroscopy for electrophysiological intervention: the zerox pilot study

Lee A.1, Liang S.3, Saravanan K.2, Ching C.K.3, Tan V.H.1, Wong K.1

1Department of Cardiology, Changi General Hospital, Singapore, 2Department of Cardiology, Hospital Sultanah Bahiyah, Malaysia, 3Department of Cardiology, National Heart Centre, Singapore

Aims
Fluoroscopy has routinely been used to guide catheters during electrophysiological procedures. However, 3-dimensional electroanatomical mapping allows us to avoid radiation from fluoroscopy. We explore the feasibility of zero fluoroscopy in 2 low-volume centres.

Methods
Aiming to achieve zero fluoroscopy, 45 consecutive patients were recruited. 4 operators used EnSite NavXTM, CARTO 3® or CARTO 3® with stereotaxis. Data including procedural times were collected. Subgroup analysis comparing the supraventricular tachycardia/cavo-tricuspid isthmus (CTI) ablation group with matched controls (without using electroanatomical systems) was performed.

Results
18 patients (40\%) received ablation of AVNRT, 11 (24\%) accessory pathway, 7 (16\%) CTI, 5 VT (11\%), 1 (2\%) atrial tachycardia and 3 (7\%) diagnostic studies. In 93\%, zero fluoroscopy was achieved. Of 3 unsuccessful cases, 1 VT ablation required fluoroscopy to register stereotaxis; 1 required fluoroscopy to navigate a CS stenosis; 1 was an unsuccessful ablation of a right free-wall accessory pathway in spite of both electroanatomical and fluoroscopic guidance.

In the SVT/CTI subgroup (\(n = 36\)), zero fluoroscopy was achieved for 35. Average fluoroscopy time (0.2 ± 1.2 vs 25.3 ± 17.4 min) and dose area product (180 vs 21855 mGy/cm\(^2\)) were significantly different compared to 30 matched controls. Procedural times (91.9 ± 40.0 vs 101.6 ± 42.3 min, \(p = 0.34\)), catheter positioning times (19.8 ± 12.2 vs 15.8 ± 7.8 min, \(p = 0.16\)) and RF times (5.5 ± 6.8 vs 9.4 ± 9.8 min, \(p = 0.07\)) were not significantly different. Total ablation times (25.5 ± 25.7 vs 60.5 ± 43.1 min, \(p < 0.01\)) and number of RF lesions (8.6 ± 7.4 vs 18.0 ± 16.3, \(p < 0.01\)) were significantly less in the zero fluoroscopy group.

Conclusion
Zero fluoroscopy is feasible, even with complex ablations. The use of zero fluoroscopy and electroanatomical mapping did not increase procedure time, and in fact reduced total ablation time.