
Robotics Middleware for Healthcare (RoMi-H)
Traffic Management and Negotiation

Sharing of Assets by Robots

3rd December 2021

Challenges in Multi-fleet Deployment in
Healthcare
Lack of Interoperability between multiple proprietary

systems

• Lack of robot-to-robot communication (handshaking to

avoid collision and info on robot routing and status)

• Similarly for IoT solutions, non-consensus of communication

protocols complicates and hinders data aggregation

Physical and infrastructural constrains

• Need for mobile robots to interface with lifts and doors

• Dedicated lifts and routes assigned to a single fleet of
robots

• Multiple charging and docking sites for robots

• Large footprint with heavy infrastructure requirements

Current State of Multi-fleet deployment

Fleet
Management
System

AMR Fleet

AMR System A

AMR System C

AMR System B

Building
Infrastructure
(Lifts & Doors)

Building
Management
System

Problems faced

1. Duplication in integration efforts and

increased integration cost

2. Lack of ability for resource optimisation

(Usage of lifts, and corridors)

RoMi-H for Multi-fleet deployment

Robotics Middleware for Healthcare (RoMi-H)

Fleet
Management
System

AMR Fleet

AMR System A

AMR System C

AMR System B

Building
Infrastructure
(Lifts & Doors)

Building
Management
System

Asset Tracking
System

e.g. RFID

Inventory
Management
System

Robotics Middleware for Healthcare (RoMi-H)

• RoMi-H is a Robotic Middleware Framework
comprising of a collection of libraries and
tools that facilitate interoperability among:
– Heterogeneous robot fleets with different OSes

– Smart building & infrastructure (including Lift &
Doors)

– Automation Systems (e.g. dispenser, pick & place
robots)

• Provides visibility of status of inter-
connected systems

• Adds intelligence to the overall
interconnected system through resource
allocation and de-conflict shared resources

RoMi-H Standardised Interfaces and Messages

RoMi-H Compliance Level

High Medium

Able to provide robot’s location

Able to be told to pause/resume current mission

Able to accept external issued
destination goals and waypoints

Only able to provide destination
goals and waypoints

Fleet Adapter API Key Classes
Critical Classes Description

Adapter Initialises and maintains communication with the other core RMF
systems. Use this to register one or more fleets and receive
a FleetUpdateHandle for each fleet.

FleetUpdateHandle Allows you to configure a fleet by adding robots and specifying settings
for the fleet (e.g. specifying what types of deliveries the fleet can
perform). New robots can be added to the fleet at any time.

RobotUpdateHandle Use this to update the position of a robot and to notify the adapter if
the robot's progress gets interrupted.

RobotCommandHandle This is a pure abstract interface class. The functions of this class must
be implemented to call upon the API of the specific fleet manager that
is being adapted.

EasyTrafficLight This is a simplified API for medium compliance fleets to receive moving
and waiting instructions from RoMi-H. This is also used to update the
current position and path of a robot.

Integrating Robot APIs into Fleet Adapters
High Compliance

RobotCommandHandle::follow_new_path()
The Robot API to command a robot to a specific location is to
be placed in this function.

RobotCommandHandle::stop()
The Robot API to command a robot to stop all
actions/missions immediately is to be placed in this function.

RobotUpdateHandle::update_position()
RobotUpdateHandle::update_battery_soc()

These two function can help to update the required robot
states. Functions can be implemented in a timer callback,
Robot APIs are to be used to provide the necessary
information. Timer can be implemented as part of the
RobotCommandHandle

Medium Compliance

pause() & resume() functions
Respective Robot API commands are to be included in the
respective functions. The functions are required arguments
inputs for the EasyTrafficLight class.

High Compliance Example (Python)
check_connection() Return True if connection to the robot API server is

successful

position() Return [x, y, theta] expressed in the robot's coordinate frame
or ‘None’ if any errors are encountered

navigate() Request the robot to navigate to pose: [x, y, theta] where x, y
and theta are in the robot's coordinate convention. This
function should return True if the robot has accepted the
request, else False

start_process() Request the robot to begin a process. This is specific to the
robot and the use case. For example, load/unload a cart for
Deliverybot or begin cleaning a zone for a cleaning robot.
Return True if the robot has accepted the request, else False

stop() Command the robot to stop. Return True if robot has
successfully stopped, else False

navigation_remaining_duration() Return the number of seconds remaining for the robot to
reach its destination Return True if the robot has successfully
completed its previous navigation request, else False

navigation_completed() Return True if the robot has successfully completed its
previous navigation request, else False.

process_completed() Return True if the robot has successfully completed its
previous process request, else False

battery_soc() Return the state of charge of the robot as a value between
0.0 and 1.0, else return ‘None’ if any errors are encountered

High Compliance Example (Python)

High Compliance Example (Python)

High Compliance Example (Python)

RoMi-H Traffic Management and Negotiation

Assumptions

• Each fleet does not know what the
others are capable of

• Each fleet can communicate a plan
that is feasible for itself

• Each fleet can see the other’s plans
and attempt to plan around it

RoMi-H Traffic Management and Negotiation

Each Fleet will propose the itinerary they would like to follow

RoMi-H Traffic Management and Negotiation

Each Fleet will respond to the ideal itineraries of the others with an
itinerary that is feasible for itself while accommodating the other

Each Fleet will then respond to each combination of the other’s
proposed itineraries with an itinerary that would be feasible for itself

RoMi-H Traffic Management and Negotiation

A third-party judge measures
the penalty of each set of
proposals.

The plan with the lowest
penalty will be chosen.

The penalty may be measured
by the sum of the delays in
completing all of the tasks.
The sum may be weighted by
the importance of each task.

RoMi-H Traffic Management and Negotiation

Video of RoMi-H Traffic Management and
Negotiation at Expo Hall 10

Challenges on Sharing Assets

• Non-unified communication protocol (AMR & different brand of lift/door)

• Need to re-develop adapter with lifts and doors for new brand of AMR

• Need to dedicate space for different types of chargers for different brand of
AMR

Common Infrastructure 1 ---- Door

• ‘Door Adapter’ acts like a state supervisor

• ‘Door Node’ acts like a translator, to translate RMF command to
door controller command

Common Infrastructure 2 ---- Lift

• ‘Lift Adapter’ acts like a state supervisor

• ‘Lift Node’ acts like a translator, to translate RMF command to lift
controller command

Message Exchange (RMF & Lift)

Message Types ROS2 Topic Description

rmf_lift_msgs/LiftState /lift_states State of the lift published by the
door node

rmf_lift_msgs/LiftRequest /lift_requests Direct requests subscribed by the lift
node and published by the lift
adapter

rmf_lift_msgs/LiftRequest /adapter_lift_requests Requests to be sent to the lift
adapter/supervisor to request safe
operation of lifts

25

How ‘Lift Node’ works?

• Translate messages (RMF → Low level Lift controller)

• Tasks:
1. To obtain ‘lift state’ from lift controller and publish ROS2

topic ‘/lift_state’ to RMF
2. To receive ROS2 topic ‘lift request’ from RMF and controls

the signals of the GPIO pins on the MCU (send to lift
controller)

RMF
Lift Node

(translator)
Lift

Controller

RMF ROS2 Topic PLC GPIO Command

26

Lift Node Example (C++)

27

Reusability of Door/Lift Node (translator)

• One-time effort on developing ‘translator’ for same brand of
door/lift

• Effortless for new brand of AMR to utilise the integrated shared
infrastructure (eg. door & lift)

Common Infrastructure 3 ---- Charger

• Universal Wireless Charger

• To install an Universal Wireless Charging
Receiver (RCU) on each AMR

• Different brand of AMR are able to charge at the
same Universal Wireless Charging Station (TPU)

• Charging Station equips with height adjustable
transmitter pad

29

Message Exchange (RMF, Charger, Receiver)

30

Charger Adapter Example (Python)

31

5 Charging Scenarios with RMF

1. Scheduled Charging

2. Ad-hoc Self-requested Charging

3. Stacked up Charging Requests

4. Wrong Charging Station

5. Charging Failure

32

Scenario 1: Scheduled Charging
• Charging task: AMR01 is scheduled to charge at Station A.
• Site Situation: AMR01 arrived for charging. Charging Station A is available.
• Action: Handshake and initiate charging.

Scheduled
Station A

33

Scenario 2: Ad-hoc self-requested charging
• Charging task: AMR01 battery is low, requested for immediate charging and

assigned to Station A.
• Site Situation: AMR01 arrived for charging. Charging Station A is available.
• Action: Handshake and initiate charging.

Station A

Ad-hoc self requested

34

Scenario 3: Stacked up charging requests
• Charging task: AMR01 is scheduled to have finished charging at Station A.

AMR02 is assigned to Station A for charging.
• Site Situation: AMR02 arrived for charging. Dock is still occupied by AMR01.
• Action: AMR02 reassigned to Station B (if available); OR AMR02 notified to

queue up and wait for available station.

Station AStation B

35

Scenario 4: Wrong charging station
• Charging task: AMR01 is scheduled to charge at Station A.
• Site Situation: AMR01 approached Station B for charging due to navigation

error. AMR01 is trying to initiate charging with Station B.
• Action: The transmitter in Station B identifies AMR01. Station B notifies the

wrong docking of AMR01. AMR01 moves to Station A for charging.

Station A Station B

Wrong RCU Charger ID!

36

Scenario 5: Charging failure

• Charging task: AMR01 is scheduled to charge at Station A.

• Site Situation: AMR01 arrived for charging. Charging Station A is available.
However, due to technical issues, the charging process cannot be initiated.

• Action: Station A inform RMF of the failure. Station A and AMR01 enter
“protection mode” to prevent damages.

a. Self-check identified Station A faulty, AMR01 reassigned to Station B.
b. Self-check identified Station A good, AMR01 faulty. Technical support
team activated for corrective maintenance.

37

Scenario 5: Charging failure

Station AStation B

Station A faulty!

Video

1. 5 AMR charging at same charging station demo
2. RoMio SCM charging demo

