
Robotics Middleware Framework

RoMi-H Development to
Deployment

WEBINAR IS STARTING SOON..

Highlights :
| RoMi-H Applications & Deployment in Real-live Environments
| Delving into Deep Tech of Robotics Middleware
| Technical Exchanges via Q&A Sessions

Robotics Middleware Framework

RoMi-H Development to
Deployment

Webinar Itinerary (1/2)
TOPICS SPEAKERS

Opening Address Selina Seah
ACEO of Changi General Hospital &
Director of CHART

Care Treatment Facilities -
Changi General Hospital Deployment

Alphonsus Tay
Robotics Engineer, CHART

Care Treatment Facilities -
EXPO Halls Deployment

Christopher Lau
Senior Software Engineer,
Hope Technik Pte Ltd

Deployment beyond Healthcare Facilities

Q&A Session One

Break Time

3

Webinar Itinerary (2/2)
TOPICS SPEAKERS

Traffic Editor III Dr Morgan Quigley

Chief Architect,
Open Robotics Singapore

Indoor/Outdoor Operations

FreeFleet

Adapters and Templates Dr Michael Grey

Software Engineering Supervisor,
Open Robotics Singapore

Flexible Task System + Teleoperation

RMF Web + Release Review

Q&A Session Two

Closing Address Prof Quek Tong Boon
Chief Executive,
National Robotic Programme

4

Journey of Robotics Middleware Framework

5

2017 2018 2019 2020

2021 2022
Demo Platform 3 @
Sentosa Island

Mass Casualty
Scenario involving
organisations such as
SingTel, GovTech,
MOH, CGH, with Field
Medical Teams and
real(!) ambulances

Demo Platform 2

Integration of
Medical Devices,
Building Infra and
Deconfliction of
Robots via RMF

Demo Platform 1

First build of RMF
working with simple
Robots Controls,
Sensors and Actuators

Adoption of Enterprise
Systems in Healthcare
and other industries as
part of Smart
Buildings/Operations

Beginning

Concept of
RMF was born

SRB Clearance

Approval in IHIS
Solution Review Board
to implement RMF in
SG Public Hospitals

Party Up

Consortium
was formed
with clear
visions

1st Webinar!

Livestream of
RMF enabling
interoperability
between robots,
infra and devices

Singapore Standards
TR93:2021 Published

Established industrial
standard with members
such as ESG, A*Star,
IMDA, Kone, Beckoff,
TÜV SÜD, SIIX-AGT,
Sesto Robotics, NTU,
ROS-Industrial etc

Deputy PM
Showcase

Demonstrated
RMF-Anywhere
capabilities
through 4G
teleops @NTU

RMF-on-Cloud
and Cybersecurity

Leverage on cloud
technologies for
rapid deployment
and stepping up on
cybersec measures

Teleops through 5G
Technologies

RMF remote robot
operations capabilities
through secured VPN
connection over 5G

 Initial RMF Architecture Diagram

6

Billing System,
Electronic Medical
Records, OTMS..

Ventilators, Vital
Signs Monitor..

Mixture of AGVs and
AMRs, typically with
software fleet manager

Standardised Interfaces and Messages (end 2019)

7

RMF

Approach to Operational Challenges of Site Deployment

NEW RMF Architecture Diagram

9

NEW!

CTF - Medical Intensive Care Unit Deployment (1/2)

10

Problem Statement:

MICU Care Team constantly help patients in setting up video calls with patient’s loved ones
and stay “rooted” to holding mobile devices for long periods of time

Solution:

(1) In-house developed UI on Temi and Mobiles,
together with backend teleconferencing services

Original
Temi Robot

Custom
Mobile
Applications

Integrated
Speaker/Mic
into Temi

Adjustable
HD Camera

(2) Lots of Engineering!

CTF - Medical Intensive Care Unit Deployment (2/2)

Solution Functionalities:
● Automatic and seamless connection between

Telepresence Robot and patient’s Next-of-Kin
● Scheduled autonomous navigation of

Telepresence Robot to patient bedside
● Remote Control of Telepresence Robot by

Next-of-Kin (e.g change camera angles/views)

Benefits:
● Free up Care Team for other patient needs
● Patients enjoys more privacy
● Reduce unnecessary staff exposure

11

https://docs.google.com/file/d/1ulIXK8cj-1nuoh4fgqgwfdd1jnn8Wfzv/preview

CTF - Expo Deployment
● Rapid Deployment in Hall 9 & 10

in less than one week
● Enabling care team and logistics

workflows for 700+ beds
● Delivery bot, Disinfection bot,

Telepresence bot interoperable
and unified under RoMi-H

Video source:

Mr Ong Ye Kung (Minister for Health of Singapore)

Top: Bird’s eye view of Expo Hall 9 | Bottom Left: Magnus collecting bags of dirty linen | Bottom Middle: Healthguard misting liquid ozone solution | Bottom right: Temi navigating autonomously to patient’s bedside for a video call

12

Different robots working together in same space

13

Robotic Agnostic Mapping Platform (RAMP)

3D sliced to 2D

● 3D map sliced into multiple
layers of different height

● Corresponding 2D map fed
into its navigation stack based
on lidar height on robot

● Reduce deployment time
● Reusable by other robots

3D Map of Expo Hall 10

Sliced 2D Map of Expo Hall 10 after touch ups

RAMP-Bot mounted with velodyne LIDAR
and display monitor to visualize SLAM

14

Deployment beyond Healthcare Facilities

Smart Old

● “Smartify” existing doors & cargo lift
● Building our own Test farm right in our

complex, enabling faster integrations
● 25 year old lift - works with RMF!
● RMF going to Libraries, Airport, Seaport,

Commercial Buildings and more..

RMF Enhanced LiftRMF Enhanced Door

15

RMF and Robots: How does it work?
● Capable of Multi-Floor,

Multimap operations

● Many robot info available,
including battery status

● Door states, Lift states etc

● Task ID, last updated etc

● Projected paths and parking
lots for de-conflictions

16

https://docs.google.com/file/d/1OW1d9R_xSzt_fsk20AtDFYvCs-yNc3S1/preview

Q&A Session 1 - Deployment

~ BREAK TIME ~

19

Traffic Editor

● Semi-automatic map alignment
● Sneak peek at Traffic Editor III

20

Building floor plan: the reference coordinate system Robot-generated map

● Until recently, it was necessary to manually edit transformation
parameters in Traffic Editor until it "looked OK"

● It worked
● It was painful
● Now, we shall introduce Semi-Automatic Alignment!

21

Aligning robot-generated maps to floorplans

https://github.com/open-rmf/rmf_traffic_editor

https://github.com/open-rmf/rmf_traffic_editor

● Fully-automatic alignment is hard
○ As-built often differs from floorplan, especially non-load-bearing walls
○ Cabinets, pillars, chairs, etc., can occlude walls

● Humans can easily spot these issues and ignore them
○ Computers cannot

● "Semi-Automatic" alignment workflow:
○ Roughly align the robot map using manual transform parameters
○ Click "features" that you can see in both robot map and floorplan

■ corners of load-bearing walls
■ pillars

○ Click "constraints" between corresponding features
○ Select Edit->"Optimize Layer Transforms" (Ctrl+T)

■ Numeric solver tries to find a transformation
that minimizes the constraint lengths

22

https://github.com/open-rmf/rmf_traffic_editor

Semi-automatic map alignment

https://github.com/open-rmf/rmf_traffic_editor

Semi-automatic map alignment

23

https://github.com/open-rmf/rmf_traffic_editor

LESS PAIN!

https://github.com/open-rmf/rmf_traffic_editor

Traffic Editor: Evolution

2018
Inkscape (SVG)
with annotations

2019
traffic-editor I
C++ / Qt

2021
traffic-editor II
TypeScript / THREE.js

2022
traffic-editor III
Rust / Bevy

desktop only web only desktop and web

24

https://github.com/open-rmf/rmf_traffic_editor

https://github.com/open-rmf/rmf_traffic_editor

Traffic Editor III:
Grand Unified Web or Native Application = GrUWorNaA

Running on desktop with full GPU acceleration,
convenient for R&D and initial deployment setup

Running in web browser for maximum portability,
convenient for deployment maintenance and ops

https://github.com/open-rmf/traffic_editor_iii

25

FANCY!

https://github.com/open-rmf/traffic_editor_iii

Traffic Editor III: Some Details

https://github.com/open-rmf/traffic_editor_iii

● Written in Rust using the Bevy game engine.
Extremely fast (easily 1000's of vertices/edges).

● native: compiles to x86_64 code for maximum GPU
awesomeness on Vulkan, multithreading, etc

● web: compiles to WebAssembly, runs in any
browser on WebGL2, but with the usual
browser-sandbox performance tradeoffs

● As in Traffic Editor II, has both 2d and 3d modes

● UI widgets via eGUI (successor of Dear ImGui)

Try the webGL version in your web browser!
https://open-rmf.github.io/traffic_editor_iii/

26

https://github.com/open-rmf/traffic_editor_iii
https://www.rust-lang.org/
https://bevyengine.org/
https://github.com/emilk/egui
https://github.com/ocornut/imgui
https://open-rmf.github.io/traffic_editor_iii/

Traffic Editor III: Roadmap

https://github.com/open-rmf/traffic_editor_iii

● Proof of concept demonstrates the tech stack seems viable 🎉
● First goal: start using it day-to-day on desktop 🖥
● Near-term feature development: 👷

○ load and save files from local disk 💾
○ UI sidebar to show/edit parameters of vertices/edges/etc 🪟 ✍
○ use mouse to add/delete/edit vertices and edges 🖱

● Will re-evaluate feature needs after those are implemented 🚧

27

https://github.com/open-rmf/traffic_editor_iii

Indoor/Outdoor Operations

28

https://github.com/open-rmf/rmf_traffic_editor

https://github.com/open-rmf/rmf_traffic_editor

Indoor/Outdoor Operations: Defining traffic in global coordinates

The Earth
is Large!

29

https://github.com/open-rmf/rmf_traffic_editor

https://github.com/open-rmf/rmf_traffic_editor

coordinate_system: wgs84
...
levels:
 L13:
 vertices:
 - [103.7879076584487, 1.298879948498967, 0, ""]
 - [103.787955969507, 1.298840697150378, 0, ""]
 - [103.7879749041004, 1.298881757958285, 0, ""]
 - [103.7879997557543, 1.298869439715983, 0, ""]

Indoor/Outdoor ops: extending the map file format

NEW!

longitude!
latitude!

30

https://github.com/open-rmf/rmf_traffic_editor

https://github.com/open-rmf/rmf_traffic_editor

Indoor/Outdoor ops: Return to Flatland
● We don't need or want to run RMF in ellipsoidal

(latitude/longitude) coordinates
○ The math is gross and CPU-intensive
○ The world is (basically) flat, at least for robots that don't go far
○ We want a convenient Cartesian approximation for RMF

● Map projection is a solved problem :)
○ Each region has a standard scheme with an EPSG code
○ For example, Singapore's projection is defined in EPSG:3414

● Traffic Editor lets you define the preferred projection
scheme for your latitude/longitude traffic map

○ The navigation graphs and simulation models generated from
the traffic map will be projected and translated as requested

○ This is "lossless" since global lat/lon coordinates can always
be re-calculated as needed

○ Mathematics is done by PROJ, the canonical software for
geodetic transforms (lol don't try to write this yourself)

● Summary: maps are defined in latitude and longitude,
then RMF operates in a "locally-flat" projection

PROJCS["SVY21 / Singapore TM",
 GEOGCS["SVY21",
 DATUM["SVY21",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6757"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4757"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",1.366666666666667],
 PARAMETER["central_meridian",103.8333333333333],
 PARAMETER["scale_factor",1],
 PARAMETER["false_easting",28001.642],
 PARAMETER["false_northing",38744.572],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","3414"]]

31

https://github.com/open-rmf/rmf_traffic_editor

http://epsg.io/
https://proj.org/
https://github.com/open-rmf/rmf_traffic_editor

Free Fleet

32

● Mobile robot deployments often involve highly
customized tasks that commercial fleets do not
support, for example interacting with
manipulators, custom sensors, etc.

● These tasks are performed by custom mobile
robot fleets, that are either built in-house or
standalone research platforms. Hence, these
mobile robots do not come with their own fleet
management system or integration API.

● Free Fleet was introduced to facilitate these
custom integrations with RMF, allowing custom
fleets to operate in the same space as other
RMF-integrated fleets.

Free Fleet

https://github.com/open-rmf/free_fleet

33

https://github.com/open-rmf/free_fleet

Free Fleet: Overview

https://github.com/open-rmf/free_fleet

● Free Fleet can be divided into
2 main components, the
Server and the Client.

● The Clients utilize the
commonly used navigation
stack API in both ROS 1 and
ROS 2, to monitor and
command the mobile robot.

● Communication between the
Server and Client is achieved
using CycloneDDS.

https://github.com/eclipse-cyclonedds/cyclonedds

34

https://github.com/open-rmf/free_fleet
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds

Free Fleet: Current State Overview

https://github.com/open-rmf/free_fleet

RMF core systems

(To be deprecated)

The Server uses standardized RMF internal
messages to update the Full Control Fleet
Adapter, as well as provide RMF control over
the client robots.

35

https://github.com/open-rmf/free_fleet

https://github.com/open-rmf/free_fleet

● To increase user configurability, moving
forwards, Free Fleet is being refactored
into a collection of libraries and
interfaces, instead of executables.

● This facilitates integration with
custom
○ Navigation stacks
○ Middlewares
○ Fleet management interfaces

● The fleet manager will then use the RMF
Fleet Adapter API to update and receive
commands, as opposed to the soon-to-be
deprecated Full Control Fleet Adapter.

Free Fleet: Moving forwards

36

https://github.com/open-rmf/free_fleet

Adapters & Templates

37

Adapters & Templates Overview

RMF uses ROS 2 messages and topic
interfaces to communicate between
different components in the overall
RMF system. In most cases we use

components called Adapters to
bridge between the hardware-specific

interfaces and the general purpose
interfaces of RMF

https://osrf.github.io/ros2multirobotbook/integration.html

Robot Fleets Workcells

Doors Lifts

Enterprise
Systems User Interfaces

38

https://osrf.github.io/ros2multirobotbook/integration.html

Current state includes 4 broad categories of fleets

Mobile Robot Fleet Adapter Overview

Full Control Traffic Light Read Only No Interface

Compatible

API Available

Provide Regular Status Update

Provide Live Status Update

Allow Pause/Resume

Allow Path Level Control

• The facility owner and SI will need to decide which level is required
• An advanced integration fleet adapter is planned for future development

https://osrf.github.io/ros2multirobotbook/rmf-core.html#fleet-adapters

39

https://osrf.github.io/ros2multirobotbook/rmf-core.html#fleet-adapters

Assumptions:

• mobile robot fleet manager allows explicit paths to be specified
• the path can be interrupted at any time and replaced with a new path
• each robot's position will be updated live as the robots are moving

API has 4 critical classes:

• Adapter - Initializes and maintains communications with RMF. Register one or more fleets and
receive a FleetUpdateHandle for each fleet.

• FleetUpdateHandle - Allows user to configure a fleet by adding robots and specifying settings for
the fleet (e.g. specifying what types of deliveries the fleet can perform). New robots can be
added to the fleet at any time.

• RobotUpdateHandle - Use this to update the position of a robot and to notify the adapter if the
robot's progress gets interrupted.

• RobotCommandHandle - This is a pure abstract interface class. The functions of this class must
be implemented to call upon the API of the specific fleet manager that is being adapted.

Mobile Robot Full Control Fleet Adapter

https://osrf.github.io/ros2multirobotbook/integration_fleets.html

40

https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/Adapter.hpp
https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/FleetUpdateHandle.hpp
https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/RobotUpdateHandle.hpp
https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/RobotCommandHandle.hpp
https://osrf.github.io/ros2multirobotbook/integration_fleets.html

Fleet Adapter Overview: https://osrf.github.io/ros2multirobotbook/rmf-core.html#fleet-adapters

Navigation Maps: https://osrf.github.io/ros2multirobotbook/integration_nav-maps.html

Full Control Fleet Adapter template: https://github.com/open-rmf/fleet_adapter_template

Full Control MiR 100 Fleet Adapter template: https://github.com/osrf/fleet_adapter_mir

Full Control API: https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter

Traffic Light API:

https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/EasyTrafficLight.hpp

Read Only API:

https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/src/read_only_blockade/FleetAdapterNode.cpp

Fleet Adapter Development - Helpful Resources

https://osrf.github.io/ros2multirobotbook/integration_fleets.html

41

https://osrf.github.io/ros2multirobotbook/rmf-core.html#fleet-adapters
https://osrf.github.io/ros2multirobotbook/integration_nav-maps.html
https://github.com/open-rmf/fleet_adapter_template
https://github.com/osrf/fleet_adapter_mir
https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter
https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/include/rmf_fleet_adapter/agv/EasyTrafficLight.hpp
https://github.com/open-rmf/rmf_ros2/blob/main/rmf_fleet_adapter/src/read_only_blockade/FleetAdapterNode.cpp
https://osrf.github.io/ros2multirobotbook/integration_fleets.html

Multi-story robot operations are possible with RMF resolving conflicts and managing shared
resources on a larger scale.
The basic requirement is that the lift controller accepts commands using a prescribed protocol
(i.e. OPC, REST, etc.)

Lift (Elevator) Adapters

https://osrf.github.io/ros2multirobotbook/integration_lifts.html

Note that a simple hardware integration is typically required to interface with the lift controller.

Lift Node example: https://github.com/sharp-rmf/kone_lift_controller

42

https://osrf.github.io/ros2multirobotbook/integration_lifts.html
https://github.com/sharp-rmf/kone_lift_controller

Doors can be integrated with RMF using a ROS 2 door node and a door adapter, which we
sometimes refer to as a door supervisor.

Door Adapters

https://osrf.github.io/ros2multirobotbook/integration_doors.html

Note that a simple hardware integration is typically required to interface with the door controller.

Door Adapter Template: https://github.com/open-rmf/door_adapter_template

43

https://osrf.github.io/ros2multirobotbook/integration_doors.html
https://github.com/open-rmf/door_adapter_template

Currently RMF has 2 types of sample workcells, namely: Dispenser and Ingestor.

Workcell Adapters

https://osrf.github.io/ros2multirobotbook/integration_workcells.html

Workcell Adapter Nodes:
https://github.com/open-rmf/rmf_simulation/tree/main/rmf_robot_sim_gazebo_plugins/src

Message Types ROS2 Topic Description
rmf_dispenser_msgs/DispenserRequest /dispenser_reqeusts Direct requests subscribed by the dispenser node
rmf_dispenser_msgs/DispenserResult /dispenser_results Result of a dispenser request, published by the

dispenser
rmf_dispenser_msgs/DispenserState /dispenser_states State of the dispenser published by the dispenser

periodically
rmf_ingestor_msgs/IngestorRequest /ingestor_requests Direct requests subscribed by the ingestor node
rmf_ingestor_msgs/IngestorResult /ingestor_results Result of a ingestor request, published by the ingestor
rmf_ingestor_msgs/IngestorState /ingestor_states State of the dispenser published by the ingestor

periodically

44

https://osrf.github.io/ros2multirobotbook/integration_workcells.html
https://github.com/open-rmf/rmf_simulation/tree/main/rmf_robot_sim_gazebo_plugins/src

Flexible Task System / Web API's

45

Flexible Task System / Web API's

https://github.com/open-rmf/rmf_api_msgs/

● Defining purpose-built flexible JSON messages instead of directly copying
around static ROS messages
○ Static ROS messages cannot be extended into new data structures without

negatively impacting the API of the whole system
○ JSON messages can be designed with explicit extension points

● This more flexible API allows us to design RMF to support any type of task, now
and into the future, without pre-existing knowledge of robot capabilities
○ System integrators can define entirely new task types that incorporate their own

unique robot capabilities, all without changing anything upstream or
downstream in RMF

● It will also allow users and system integrators to create custom task requests on
the fly by assembling sequences of robot activities into a novel task definition

46

https://github.com/open-rmf/rmf_api_msgs/

Flexible Task System Overview
Legacy Approach

● Rigid task definitions
○ Out of the box support for Clean,

Loop and Delivery tasks

○ Supporting a different type of task
requires extensive development in

■ rmf_task
■ rmf_internal_msgs (ABI

breaks)
■ rmf_fleet_adapter libraries

● Unable to interrupt/resume and cancel
on-going tasks

● No backup of task/robot states and logs

RMF 22.02 Release

✓ Flexible task definitions
○ Tasks definitions can now be constructed at

runtime using building blocks defined by json
schemas

○ Out of the box building blocks include
■ GoToPlace
■ WaitFor
■ Pickup
■ Dropoff
■ PerformAction and more…

✓ Able to interrupt and resume ongoing tasks

✓ Able to cancel ongoing tasks and have robots
perform specifiable behavior upon cancellation

✓ Backup task/robot states and logs
47

https://github.com/open-rmf/rmf_task

https://github.com/open-rmf/rmf_task

Flexible Task API schema - Task Request

https://github.com/open-rmf/rmf_api_msgs/

48

https://github.com/open-rmf/rmf_api_msgs/

Flexible Task System - example patrol request

https://github.com/open-rmf/rmf_api_msgs/

Legacy
task description in ros2 msg

RMF 22.02 Release
task description in json format

rmf_task_msgs.msg.TaskDescription(
start_time=builtin_interfaces.msg.Time(sec=0, nanosec=0),
priority=rmf_task_msgs.msg.Priority(value=0),
task_type=rmf_task_msgs.msg.TaskType(type=1),
station=rmf_task_msgs.msg.Station(

 task_id='',
 …),

loop=rmf_task_msgs.msg.Loop(
task_id='',
robot_type='',
num_loops=3,
start_name='coe',
finish_name='lounge'),

delivery=rmf_task_msgs.msg.Delivery(
task_id='',
items=[],
pickup_place_name='',
...),

clean=rmf_task_msgs.msg.Clean(start_waypoint=''))
)

{
 "type": "dispatch_task_request",
 "request":
 {
 "unix_millis_earliest_start_time": 0,
 "priority": {"type":"binary","value":0},
 "labels": ["swagger"],
 "category": "patrol",
 "description":
 {
 "places": ["coe", "lounge"],
 "rounds": 3
 }
 }
}

49

https://github.com/open-rmf/rmf_api_msgs/

Flexible Task System Demo: Multi-stop Task

Create and submit a task
where a robot needs to
visit N different places

50

https://github.com/open-rmf/rmf_task

https://docs.google.com/file/d/17890CUkaxHp6GY0UgFBdoCMPnBCUKmEf/preview
https://github.com/open-rmf/rmf_task

Flexible Task System Demo: Direct Assignment

Task is assigned to a robot tinyRobot1
based on bidding outcome.

Same task is assigned to the specified
tinyRobot2 when submitted via the direct
assignment pipeline

“Direct Assignment” pipeline implemented in parallel to the bidding framework

51

https://github.com/open-rmf/rmf_task

https://docs.google.com/file/d/1pYkX-IoSVKYu3yHU215_6SHNJGa3mMla/preview
https://docs.google.com/file/d/1r6pJA52w6NxWHYUWFqb2v3SKrXEkNgKb/preview
https://github.com/open-rmf/rmf_task

Flexible Task System Demo: Teleop Task
● RMF guides robot

to teleop start
point and then
gives up control of
the robot (yellow
marker
disappears)

● Second terminal
teleops the robot
around
(replacement for
joystick)

● When done, RMF
takes back control
(yellow marker
appears).

52

https://github.com/open-rmf/rmf_task

https://docs.google.com/file/d/1Q83m_jhwjNiWqTqIkjb2gQIiJ2eaKuoa/preview
https://github.com/open-rmf/rmf_task

Teleoperation

53

Open-RMF Teleoperation

https://github.com/open-rmf/rmf-web/tree/proto/teleop

Motivations:
• Open-RMF web dashboard as an operator interface

• What if Operator wants to override RMF in some cases
• Possible scenarios

• Unexpected obstacles / Robot gets “lost” - Robot Navigation Failure
• “On-Demand” behaviors required - Bypass RMF automation

• (A) Provide standard API mechanisms to enable “common” robot control
actions

• Drive / Reverse / Rotate with Joystick Controls
• Video Feed of Robot perspective / Navigation map

• (B) Allow mechanisms to flexibly enable robot-unique remote control
functions

• Eg: Tilt of Camera View, Custom speech etc

54

https://github.com/open-rmf/rmf-web/tree/proto/teleop

Open-RMF Teleoperation

https://github.com/open-rmf/rmf-web/tree/taskv2-teleop-monolith

● RMF web server exposes
REST / socketio endpoints for
generic motion commands

● Adapter translates these
messages into robot specific
teleoperation control
commands

● With Taskv2 PerformAction,
Operator temporarily
suspends RMF control

● Robot goes vroom!

55

https://github.com/open-rmf/rmf-web/tree/taskv2-teleop-monolith
https://docs.google.com/file/d/1b_PtOsGs21z8NRCnrTPq0z9FpA0SMl5q/preview

RMF Web

56

RMF Web: Dashboard

https://github.com/open-rmf/rmf-web

The RMF Web Dashboard is an Open Source, configurable
web application that provides users with high level control
and visibility over RMF deployments.

57

https://github.com/open-rmf/rmf-web

RMF Web: Dashboard evolution

https://github.com/open-rmf/rmf-web

2018
● Written in AngularJs (https://angularjs.org/)
● SOSS ros2-websocket bridge
● Visualization of fleet states
● Barebones prototype

2019
● Written in AngularJs (https://angularjs.org/)
● Visualization of infrastructure states
● Navigation command of robots

58

https://github.com/open-rmf/rmf-web
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/

RMF Web: Evolution continued

https://github.com/open-rmf/rmf-web

2020
● Migrated to ReactJs

(https://reactjs.org/)
● Detailed introspection of states
● Supported Lift and Door control
● Supported Loop and Delivery

requests

2022
● Migrated to python backend (api-server)

(https://github.com/open-rmf/rmf-web/tree
/main/packages/api-server)

● Deprecated use of ros2-websocket bridge
● Separate tabs for Infrastructure, Robots,

Tasks and Admin
● Granular introspection of Tasks, Phases and

Events, including state and logs
59

https://github.com/open-rmf/rmf-web
https://reactjs.org/
https://reactjs.org/
https://github.com/open-rmf/rmf-web/tree/main/packages/api-server
https://github.com/open-rmf/rmf-web/tree/main/packages/api-server
https://github.com/open-rmf/rmf-web/tree/main/packages/api-server

RMF Web: Overview

https://github.com/open-rmf/rmf-web

● The RMF Web stack mainly consists of
the API server and the Dashboard.

● The API server implements REST APIs
using Socket.IO (https://socket.io/), for
all data enquiries from the Dashboards.

● The Dashboard communicates with the
API server using OpenAPI
(https://swagger.io/specification/)
generated API clients.

● The frontend of the Dashboard is
implemented using the React framework
(https://reactjs.org/).

API server

RMF core systems

Multiple robot fleets

Multiple dashboards

Database

60

https://github.com/open-rmf/rmf-web
https://socket.io/
https://socket.io/
https://swagger.io/specification/
https://swagger.io/specification/
https://reactjs.org/
https://reactjs.org/

● In order to support multiple types of databases,
the API server uses Tortoise ORM
(https://tortoise-orm.readthedocs.io/en/latest/)
to perform all database related operations, this
includes logging and retrieving data.

● Supported databases include
○ PostgreSQL
○ SQLite
○ MySQL / MariaDB

RMF Web: Overview

https://github.com/open-rmf/rmf-web

API server

RMF core systems

Multiple robot fleets

Multiple dashboards

Database

61

https://tortoise-orm.readthedocs.io/en/latest/
https://tortoise-orm.readthedocs.io/en/latest/
https://github.com/open-rmf/rmf-web

● The API Server communicates with
RMF through

○ Standardized internal messages
for anything related to

■ Doors
■ Lifts
■ Workcells

○ Standardized RMF API messages
 for anything related to

■ Tasks
■ Robot fleets

RMF Web: Overview

https://github.com/open-rmf/rmf_internal_msgs
https://github.com/open-rmf/rmf_api_msgs

API server

RMF core systems

Multiple robot fleets

Multiple dashboards

Database

62

https://github.com/open-rmf/rmf_internal_msgs
https://github.com/open-rmf/rmf_api_msgs
https://github.com/open-rmf/rmf_internal_msgs
https://github.com/open-rmf/rmf_api_msgs

● rmf-web now
provides detailed
visualization of
Task states and
Task logs

● Task states can be
expanded into its
various phases and
events.

● Task logs are
described for each
separate event
available in this
task. Task logsTask states

RMF Web: recent Dashboard upgrades

https://github.com/open-rmf/rmf-web

63

https://github.com/open-rmf/rmf-web

Release Review

64

Current Release Features
● Infrastructure Integration for Doors, Lifts and Workcells

○ Tested doors - Assa Abloy, Dormakaba
○ Tested lifts - Kone, Meyer, Fujitec
○ state/request/results messages

● Different level of traffic control for robots (Full Control, Traffic Light, Read Only)
● Cloud deployment on AWS EC2 with Wireguard VPN
● Web Based GUI Traffic Editor for multi robot deployment

○ Task management and
○ Path planning and editing
○ Infrastructure status

● Traffic scheduler and multi-robot deconfliction capabilities
● Ignition and Gazebo simulator plugins
● Cross-Platform, Cross-Fleet and Cross-Vendor robot interoperability

65

https://osrf.github.io/ros2multirobotbook

https://osrf.github.io/ros2multirobotbook

22.02 Release Review
● Real-Time Location Service (RTLS) Messages

○ Used to track the locations of non-robot assets in real time

● Flexible task definitions
○ System integrators can define new types of tasks without modifying RMF source code
○ The dashboard could expose a UI that lets end-users graphically define custom tasks

■ The end customer of a deployment can decide whether this feature should be made available to users

● Manual intervention of task flow
○ Command a robot to pause or cancel a live task
○ Command a robot to repeat or skip some phase(s) of a task

● Formal robot command hand-off
○ Hand off command of a robot as a formal step in a task
○ Some tasks require domain-specific behaviors for periods of time. This feature provides a formal, seamless way to

allow that during ordinary task execution.

● Direct robot task requests
○ Bypass the dispatch system and issue task requests directly to specific robots

● Stable Web API
○ We will be defining a stable Web API for external applications to tap into RMF
○ The API can be used by web dashboards or any other peripheral RMF applications
○ The API will be based on JSON and will transmit using WebSockets and/or REST services depending on API calls

66

https://osrf.github.io/ros2multirobotbook

SHINING!

https://osrf.github.io/ros2multirobotbook

Q&A Session 2 - Deep Tech

~ THE END ~

https://www.cgh.com.sg/CHART
https://www.hopetechnik.com/
https://www.openrobotics.org/
https://www.ihis.com.sg/

https://www.cgh.com.sg/CHART
https://www.hopetechnik.com/
https://www.openrobotics.org/
https://www.ihis.com.sg/

