

1

Robotics Middleware for Healthcare (RoMi-H)

Introduction
Robotics Middleware for Healthcare (RoMi-H) is a middleware that aims to integrate diverse systems

in the Singapore Public Health Institutions (PHIs). These systems include medical devices, robotic

systems, nurse/patient/operator user interface devices (UI), building infrastructure, IoT devices, and

Hospital Information Systems (HIS). Refer to Figure 1 for an illustration of RoMi-H.

Figure 1 Illustration of RoMi-H

Built on ROS 2 framework, RoMi-H forms the central communication layer that facilitates diverse

systems to work on one unified platform, while complying with healthcare standards and controls.

RoMi-H achieves this by creating standardised message libraries, translators and adaptors for

various platforms.

The interoperability among the heterogeneous systems will allow hospitals to maximise their

operational efficiency, such as flexible job allocation to Autonomous Mobile Robots (AMRs) from

different vendors. Building infrastructure can also be better utilised by different AMRs e.g. sharing

the same lift by different make/model of AMRs. For hospitals, this will mean lower integration

efforts for subsequent introduction of new systems, as they only need to integrate their common

systems and infrastructure once via RoMi-H.

2

RoMi-H will also enable adoption of standardised security protocols, reduce technical risks, and

allow the healthcare industry to deploy solutions more quickly to satisfy the growing demand for

automation and adoption of technology.

Key Features
 Infrastructure management: RoMi-H allows multiple robotic agents to communicate with

building infrastructure, building management systems and enterprise systems (e.g. card

access control, door and lift controls, fire safety systems and nurse call systems).

 Multi-fleet coordination: RoMi-H Core provides a scalable, highly modular and distributed

management system to coordinate and monitor multiple fleet managers, building

infrastructure and work cells.

 Simulation: RoMi-H comes with a virtual simulation tool to help Institutions identify and

predict optimal traffic by modelling the deployment of robots in the Institution. This tool will

also help in expansion planning and real time code testing of the systems.

 Development and integration tools: Using ROS 2 provides access to an evergrowing

community and open-source packages. Some recent developments include:

o System-Of-Systems Synthesizer (SOSS) – a bridge allowing the conversion of

messages between different protocols, including but not limited to ROS 2, ROS1,

WebSocket, TCP server, TCP client, REST server and HL7.

o Robot Agnostic Mapping Platform (RAMP) – a mapping platform for generating 3D

maps of the environment. The maps can be used by 3D LiDAR-based robots or be

sliced to fit any 2D LiDAR-based robot.

o ROS 2 packages for medical grade devices, LiDARs, location beacons, preventative

maintenance sensors and more.

o Health IT (HIT) sandbox for development and integration environments.

RAISE and Robot Integration
The Robotics, Automation, and Interfaces Scheduling Engine (RAISE) is designed as a high-level

planner and operations facilitator for robotic task assignment and execution. This system will work

independently of and in parallel with vendor fleet managers. The RAISE does not replace vendor

fleet managers; however, vendor fleet managers will be required to interact with the RAISE through

a set of APIs in order for the building’s robotic ecosystem to function properly.

The RAISE will track, communicate and monitor the status of robots as well as their task

assignments. Priority levels will be assigned to tasks within the RAISE in order to ensure higher

priority plans will take precedence. For example, an urgent pharmaceutical ad hoc delivery will

override an ad hoc beverage delivery.

In addition to task assignment and execution management, the RAISE will need to arbitrate robot

traffic flows and manage infrastructure (i.e. doors, lifts, etc) in order to optimize the ecosystem. This

arbitration logic is required to:

1. Avoid potential conflicts between platforms of different vendors and

2. Resolve conflicts should they arise.

More technical details of Robotic Middleware Framework and available packages are available at:
https://osrf.github.io/ros2multirobotbook

https://osrf.github.io/ros2multirobotbook

3

Appendix 1 – RoMi-H Compliance & Integration Requirements

A. General Requirements
1. A SI will be identified for RoMi-H integration in each institution.
2. The system vendor shall provide the necessary information and commands so as to allow control

of the system by RoMi-H in both normal and emergency situations.
3. The connectivity between the vendor system server and RoMi-H shall meet the requirements in

accordance to Error! Reference source not found. requirements.
4. When called upon by the SI, the system vendor shall provide the necessary information for the

verification and validation of RoMi-H software configuration to be installed and run in an
institution.

5. All interface messages shall be request / inquiry messages or result / response messages.
6. The system vendor’s solution shall only request for messages on a need-to basis.
7. All messages must be buffered until the receiving party confirms the receipt of the message.
8. All messages shall be logged in the system for at least 2 weeks.
9. In the event of lost connection to RoMi-H, the system design shall involve the following

procedure:
i. The sender shall repeat a message until confirmation by receiver or until a pre-defined

connection cut-off time.
ii. Upon cut-off, the system shall send an alert to the SI to alert of issue.

10. The system vendor shall provide the required information to RoMi-H, which may include but not
limited to the following (Appendix 3):

i. Status of AMR which include travel path, updated location, battery life and etc.
ii. Fault report and rectification report.
iii. Any other information as requested by SI and agreed by the system vendor.

B. Integration with AMR
1. The AMR solution will be assessed based on the Compliance Levels with RoMi-H. They are

explained in Table 1 with the relevant descriptions of each Level.
2. The AMR system shall have a minimum Compliance Level of “Medium” with respect to the

information and commands provided to RoMi-H.
3. The fleet manager of the vendor shall communicate to RoMi-H through one of the following

means:
i. For ROS 2 system, the vendor shall provide standardized interface messages as indicated in

Appendix 3Appendix 3 – Standardized ROS 2 Interface Messages.
ii. For Non-ROS 2 system, the vendor shall provide the information and relevant commands of

the AMRs.

4

Table 1: RoMi-H Compliance Levels

Compliance Expected Data Comms Outcome

HIGH

 robot locations
 read/write goals

 pause / resume
 read/write path waypoints

RoMi-H able to observe individual AMRs in
the fleet; able to direct individual AMRs to
specific indoor location

MEDIUM
(Minimum
Compliance)

 robot locations

 read-only goals
 pause / resume

RoMi-H able to observe individual AMRs in
the fleet; able to pause and resume individual
AMRs

LOW

 robot locations
 read-only goals

RoMi-H able to observe location of individual
AMRs in the fleet; no level of control. Fleet
operations must be spatio-temporally
separated via manual scheduling or constant
manual deconfliction.

NON

 not applicable Robots are obstacles. Fleet operations must
be spatio-temporally separated via manual
scheduling or constant manual deconfliction.

4. For Non-ROS 2 system, the information and commands shall be integrated to RoMi-H through

REST APIs. The information and commands to integrate are stated in Table 2.

Table 2: AMR Commands

Command/Information Description

Start Command from RoMi-H to start moving the AMR
Stop Command from RoMi-H to stop the AMR

AMR Status Information to RoMi-H on the battery level, job ID, orientation
and speed information of the AMR

AMR Location Information to RoMi-H on X and Y coordinates of the AMRs on its
map

AMR Waypoint (Read) Information on the X and Y coordinates of the waypoints that
the AMR intends to pass through for its current task

AMR Waypoint (Write) Command from RoMi-H to change the X and Y coordinates that
the AMR intends to pass through for its current task

Map The map used by the AMR on its fleet management system

Floor Change Command from RoMi-H to change the map of the AMR when it
reaches a new/different floor

Request Lift Command to RoMi-H to request to take lift
Request Lift Destination Command to RoMi-H to request to send the lift to destination

floor

Request Door Open/Close Command to RoMi-H to request to open or close the door
Request AMR Battery
Management System

Command from RoMi-H to AMR fleet manager to allow charging
of AMR. This could be in CAN / IO command.

5. The AMR shall update the location and status to RoMi-H on 1 Hz frequency. The frequency could

be adjusted by the SI with Institution’s consideration.
6. The RoMi-H will provide location and status updates of the AMR via RoMi-H dashboard.

5

7. The vendor shall work with the SI to ensure that the AMR can execute the following actions
during emergencies (e.g. fire / evacuation / Code Blue):

i. Communicate with the Fire Alarm System/Building Management System via RoMi-H.
ii. Move to specific, predetermined areas autonomously as commanded by RoMi-H.
iii. If the AMR is in the lift, it shall exit the lift and move to specific, predetermined areas outside

the lift autonomously.

C. Integration with Lift System
1. The vendor shall work with the SI to develop communication protocol that allows the lift system

to operate with RoMi-H and the AMR system

2. Possible integration method between lift and RoMi-H include i) Integration via PLC, and ii)

Integration via server

i. Lift Integration with PLC

The suggested integration to lifts consists of SI components (green) and the lift OEM

components (orange).

In this integration, a PLC takes in, via Ethernet, RoMi-H messages from RoMi-H Core.

Pre-programmed logic in the PLC is to recognize and convert these RoMi-H messages to

a sequence of 24V input/output signals to the lift controller. These signals may include:

door status, lift mode, floor, etc. The sequence of activating the 24V I/O signals must

match that from the lift controller in order to control the lift. The SI is to ensure that the

OPC variables are properly mapped to RoMi-H messages. This piece of information can

be obtained from the OEM of the lift.

Both the SI and the lift OEM must ensure that the lift continues to operate safely after

the integration with RoMi-H. Note that AMR movements are not shown here but it is

commanded by RoMi-H Core separately.

6

ii. Lift Integration with Server

Lift integration can also be through server-to-server communications. This happens

when the lift OEM also uses a master lift server (orange) to control the lifts.

In this suggested integration, the lift server with OPC tunneller (green) is to be provided

by the SI. This server takes in RoMi-H messages from RoMi-H Core; it translates and

converts the messages to trigger various OPC variables. The communication with the

master lift server is done using an OPC tunneller. The exact OPC variables to trigger

depend on the lift OEM. These OPC variables may include: door status, lift mode, floor,

etc. The SI is to ensure that the OPC variables are properly mapped to RoMi-H messages.

Both the SI and the lift OEM must ensure that the lift continues to operate safely after

the integration with RoMi-H. Note that AMR movements are not shown here but it is

commanded by RoMi-H Core separately.

3. With either integration method, the lift system should be able to operate with RoMi-H in the
sequence described in Table 3.

4. If the lift system is unable to work with the said sequence, the vendor should work with the SI
to create an alternative sequence compliant with RoMi-H architecture.

7

Table 3: Integration with Lift System

Sequence

Signals to/from

lift controller (LC) &

corresponding actions

1. AMR arrives at the way point of the origin lift lobby and

stops. AMR informs RoMi-H its location

N.A

2. RoMi-H makes a request to switch the lift to AGV mode

(assuming shared lift)

Signal from RoMi-H to LC that

toggles the lift to AGV mode

from passenger mode

3. Lift sends confirmation that lift mode changed to AGV

mode

AGV mode Signal from LC to

RoMi-H

4. RoMi-H makes hall call to lift controller to send the lift

to the origin floor.

Signal from RoMi-H to LC that

corresponds to the hall call level

5. Lift moves to origin floor and holds its doors open N.A

6. Lift controller informs RoMi-H lift has arrived at origin

floor and lift doors are open

LC sends floor number and door

opened signal to RoMi-H

7. RoMi-H requests AMR to enter the lift by giving it the

next way point inside the lift

N.A

8. AMR enters the lift and informs RoMi-H it has arrived at

the way point inside the lift

N.A

9. RoMi-H makes car call to lift controller to send the lift

to the destination floor

RoMi-H sends LC door close

command (if needed) and the

destination floor number

10. Lift controller closes the lift doors, and sends lift to the

destination floor

N.A

11. Lift arrives at destination floor and holds its doors open N.A

12. Lift controller informs RoMi-H lift has arrived at

destination floor and lift doors are open

LC sends floor number and door

opened signal to RoMi-H

13. RoMi-H requests AMR to exit the lift by giving it the

next way point in the lift lobby

N.A

14. AMR exits the lift and informs RoMi-H it has arrived at

the way point in the lift lobby

N.A

15. RoMi-H informs lift controller to release the lift RoMi-H sends LC to change the

lift mode to passenger mode

16. Lift controller closes lift doors, switches lift to Passenger

Mode, and returns lift to hall call group

N.A

17. RoMi-H requests AMR to resume mission N.A

18. AMR resumes mission N.A

8

D. Integration with Door System
1. The vendor shall work with the SI to develop communication protocol that allows the door system

to operate with RoMi-H and the AMR system

2. Possible integration method between door and RoMi-H include integration via PLC

The suggested integration to doors consists of SI components (green) and the door OEM

components (orange).

In this integration, a PLC takes in, via Ethernet, RoMi-H messages from RoMi-H Core.

Pre-programmed logic in the PLC is to recognize and convert these RoMi-H messages to

a sequence of 24V input/output signals to the door controller. The signals from the door

controller must include the door status i.e. door fully opened or door fully closed. The

PLC is to control the opening and closing of doors upon receiving the relevant message

from RoMi-H Core.

Both the SI and the door OEM must ensure that the door continues to operate safely

after the integration with RoMi-H. Note that AMR movements are not shown here but

it is commanded by RoMi-H Core separately.

The SI may propose for integration with the Institution’s secure doors system (if any).

3. The door system should be able to operate with RoMi-H in the sequence described in Table 4.
4. If the door system is unable to work with the said sequence, the vendor should work with the SI

to create an alternative sequence compliant with RoMi-H architecture.

9

Table 4: Integration with Door System

 Steps

Signals to/from

door controller (DC) &

corresponding actions

1. AMR arrives at the waypoint in front of the door and

stops. AMR updates RoMi-H its location

NA

2. RoMi-H sends ‘open door’ message to PLC in OPCUA

variables. PLC sends ‘open door’ signal to door

controller

- DC receives ‘open door’ signal

from PLC

3. Door controller opens the door and holds the door

open.

(if needed) PLC sends ‘hold door’ message to door

controller to keep the door open

- DC opens the door

- DC holds the door open

- (if needed) DC receives ‘hold

door’ signal from PLC

4. Once door is fully opened, door controller sends ‘door

is open’ signal to PLC. PLC sends ‘door is open’

message to RoMi-H in OPCUA variables

- DC sends ‘door is open’ signal

to PLC

5. RoMi-H requests AMR to move to the next waypoint

after the doorway

NA

6. AMR moves through the doorway NA

7. AMR updates RoMi-H its new waypoint after the

doorway

NA

8. RoMi-H sends ‘close door’ message to PLC in OPCUA

variables. PLC sends ‘close door’ signal to door

controller.

- DC receives ‘close door’ signal

from PLC

9. Door controller closes the door. - DC closes the door

10. Once door is fully closed, door controller sends ‘door is

closed’ signal to PLC. PLC sends ‘door is closed’

message to RoMi-H in OPCUA variables

- DC sends ‘door is closed’ signal

to PLC

11. Door returns to normal mode e.g. card access. NA

12. RoMi-H requests AMR to resume mission NA

13. AMR resumes mission NA

10

Appendix 2 – Verification and Validation
Verification and validation post RoMi-H integration in an Institution shall, at a minimum, have

testing and simulation standards as defined below.

Testing Standards

Test Type Requirement Frequency

Unit Tests ‣ Full coverage of public APIs of all libraries
‣ Coverage of known edge cases in the API (e.g.
to verify that exceptions are handled correctly)

Continuous
Integration*

Integration Tests ‣ Full coverage of the features provided by the
public APIs of all libraries

‣ Coverage of challenging edge cases to ensure
desired behavior

Continuous
Integration*

System Tests ‣ Full coverage of all executables that are used
in RoMi-H
‣ A set of simulated tasks that encompass the
critical capabilities of RoMi-H

‣ A set of simulated scenarios that present
substantial challenges to RoMi-H (e.g. traffic
conflicts in a crowded hallway)

Continuous
Integration*

Performance Tests Testing metrics for:

‣ Latency

‣ Communication bandwidth usage
‣ Quality of deployment (e.g. were the tasks
completed in a good time? were resources
utilized well?)

In scenarios that are:

‣ Easy (e.g. low-traffic)
‣ Nominal (e.g. expected traffic)

‣ Difficult (e.g. high-traffic)

Once per week

AND

Before deployment

Customer Acceptance Test ‣ Systems Tests that match the customer's use
cases

‣ Performance Tests that reflect the customer's
infrastructure limits

Before deployment

*Continuous Integration: These tests are run twice each day. These tests must also be satisfied by

any new code before merging it into the mainline codebase.

Simulation Standards
Prior to installation, prior to operations and in the event when any new devices are introduced to

the system, a software simulation demonstrating (i) virtual physical performance, (ii) successful

11

software command execution (i.e. System Tests as described above), and (iii) performance to Service

Level Agreements (SLAs) of the Institution must be performed.

The interfaces to be validated must include all interfaces which will be used in operations of the

RoMi-H for that particular Institution. The following are typical interfaces which could be included,

however final interfaces must be identified by the integrator and Institution: robot fleet managers,

elevators, doors, building management systems, user interfaces, workcells, HIT, IOT sensors and

medical devices.

As part of the continuous development of RoMi-H, simulation tools and assets for CHART’s Virtual

Test-Bedding Platform will be published. It is suggested but not required, that these tools be used

for easier evaluation by the approving body.

12

Appendix 3 – Standardized ROS 2 Interface Messages

To connect to RoMi-H, the vendor shall provide the following ROS 2 messages. Depending on the final
use case, the list of ROS 2 message may include more items.

ROS 2 Message Details (message type message name) Description

FleetState.msg
string fleet_name Name of the fleet

RobotState[] robots Status of robots

RobotState.msg

builtin_interfaces/Time robot_time Time of robot

string robot_name Name of robot

string status Status of robot

geometry_msgs/Pose location Location of robot

Task[] task_queue Task queue

float32 battery_percent Percentage of battery left

uint32 mode

Mode of robot

Normal = 0

Charging = 1

Pause = 2

Emergency = 3

RobotTask.msg
string robot_name Name of robot

string task_id ID of task

RobotPath.msg
string robot_name Name of robot

Path robot_path Path of robot

DoorState.msg

string name Name of door

uint8 door_type

Undefined=0

Single sliding=1

Double sliding=2

Single telescope=3

Double telescope=4

Single swing=5

Double swing=6

geometry_msgs/Pose Swinging pose of door

closed_edge_location Location of door

float32 motion_range Range of motion of door

Door.msg

builtin_interfaces/Time door_time Time at door

string door_name Name of door

uint8 door_state
Closed=0

Moving=1

13

ROS 2 Message Details (message type message name) Description

Opened=2

LiftState.msg

builtin_interfaces/Time lift_time Time at lift

string lift_name Name of lift

string[] available_floors Floors available to choose

string current_floor Current floor the lift is at

string destination_floor
Destination floor the lift is to

go

uint8 door_state

Closed =0

Moving =1

Opened =2

uint8 motion_state

Stopped =0

Up =1

Down =2

Unknown =3

uint8[] available_modes Mode of lift

uint8 current_mode

Unknown =0

Passenger =1

AGV =2

Fire =3

Offline =4

Emergency =5

string session_id Session ID

LiftRequest.msg

string lift_name Name of lift

string session_id Session ID

uint8 request_type Type of request

string destination_floor

End =0

AGV Mode =1

Passenger Mode =2

uint8 door_state
Opened =2

Closed =0

